
James Ashworth ES327

AN ERLANG IMPLEMENTATION
OF DERIVING NATURAL LAWS

THROUGH THE USE OF
GENETIC PROGRAMMING

James Ashworth

APRIL 23, 2014
UNIVERSITY OF WARWICK

School of Engineering

James Ashworth ES327

ii

Self-Assessment

The engineering contribution of this project is difficult to quantify at this stage. The program

created is a tool, to be used initially by Dr Higgins’s PhD group, but it is flexible enough to be

used for any number of applications.

The field of Genetic Programming is currently growing in popularity, with more papers being

published year on year for the last decade. The code itself is in a position to be extended by

anyone with the time to learn the language, and the program can be run without any

modifications to give the results presented in this report, and more.

In a year, this project has taken me from nothing, to learning a new language (Erlang), and a

new paradigm (functional programming), to understanding Genetic Programming and its

nuances, to writing a completely functional program using all of the above and proving, in

testing, that it works exactly as intended. It is not without weaknesses, but these are mostly

related to usability, rather than functionality, and have been addressed in the section

‘Recommendation for Further Work’.

James Ashworth ES327

iii

Summary

Project

This project was to create a program able to apply Genetic Programming to solve arbitrary

data sets. The language had to be chosen, the code had to be written, and test cases had to

be created and run. The program then had to be evaluated, to determine what modifications

would need to be made before the program could be used by Dr Higgins’s PhD Research

Group.

Report

This report is structured to introduce the reader to the project, and then explain the basic

tenets of Genetic Programming. Once the groundwork has been laid, the code itself is

presented and documented, and taken forward to test. There are two types of testing

performed for this report. Firstly, an in-depth look into how varying the parameters affects

the outcome, and secondly, a broader look as the program tackles several separate data sets.

The results of the testing are then discussed, and conclusions are drawn. Finally, the costs of

the project are determined, and any shortcomings or new avenues to be explored are

discussed. The appendices include the full table of results for the in-depth analysis of

parameters, and the full commit log for the GitHub repository used to store and version the

code.

James Ashworth ES327

iv

Conclusion

Erlang proved to be very suitable for the project. The language is well documented by

Eriksson, with a fast compiler, and a useful debugging function built in to the interpreter. At

the conclusion, I have a good understanding of the complexities of Genetic Programming,

especially after overcoming several problems during the coding process. The code itself now

runs to completion without errors every time, and can solve fairly complex problems, given

long enough. The project remains in a GitHub repository, giving a clear audit trail, and is fully

commented, allowing it to be picked up as a future project if necessary. The report itself

contains a very comprehensive result set, demonstrating the abilities (and limitations) of the

project, across multiple data sets. The various requirements for future work are almost all

cosmetic (in that they are not required for successfully running the program), which leads me

to conclude that the project was a success, having met all of the goals stated in the original

specification and exceeding many.

James Ashworth ES327

v

Table of Contents

Self-Assessment ... ii

Summary ... iii

Project ... iii

Report .. iii

Conclusion ... iv

Table of Contents ... v

List of Figures .. ix

List of Tables .. x

Introduction ... 1

Purpose... 1

Conclusion .. 2

Demonstration of IT Skills .. 3

Final Project Specification .. 4

Language Decision .. 4

Understanding of GP .. 4

Code Writing .. 4

Presentation of Results .. 4

Literature Review / Theory .. 5

What is Genetic Programming? ... 5

How does Genetic Programming work? .. 7

James Ashworth ES327

vi

Pool ... 7

Operations .. 7

Fitness ... 10

Methods .. 10

Overview of Code Structure ... 12

Language Decision .. 12

Representation of Equations .. 13

Representation of Elements within Equations .. 13

Evaluation ... 14

Of Equations ... 14

Of the Pool .. 14

Settings ... 15

Output .. 15

Equation Formatting ... 15

To File .. 15

Separation of Functionality .. 16

Initialise ... 16

Filereader .. 18

Operation .. 20

Evaluator ... 23

Output ... 25

James Ashworth ES327

vii

Standard ... 27

Results .. 29

Roulette vs Stochastic Discussion .. 29

High Crossover vs Low Crossover ... 30

High Mutation vs Low Mutation .. 31

Multiple Mutation vs Single Mutation ... 32

No Duplicates vs Limited Duplicates vs Unlimited ... 33

Refilling Pool vs Not ... 34

Large Pool vs Small Pool ... 35

Approximations for 4𝜋2 (39.478418, 6d.p.) .. 36

Circumference of a Circle ... 37

Convergence Times .. 37

Final Output .. 37

Volume of a Cuboid .. 38

Convergence Times .. 38

Final Output .. 38

Volume of a Square-Based Pyramid ... 39

Convergence Times .. 39

Final Output .. 40

Volume of a Torus .. 41

Convergence Times .. 41

James Ashworth ES327

viii

Final Output .. 42

Results Analysis .. 43

Conclusions .. 44

Language Decision .. 44

Understanding of GP .. 44

Code Writing .. 44

Presentation of Results .. 45

Costing ... 45

Supervisor Time .. 45

Technician Time.. 45

Student Time .. 45

Printing Costs.. 45

Total Project Cost ... 45

Recommendation for Further Work .. 46

Code of Ethics and Professional Conduct .. 48

Bibliography ... 49

Appendix 1: Full Table of Results ... 52

Appendix 2: Commit Log and Statements ... 56

James Ashworth ES327

ix

List of Figures

Figure 1 – Mutation of ((A + B) * C) to ((A / B) * C) ... 8

Figure 2 - Crossover of ((A + B) * C) and ((A - C) + (C * D)) .. 9

Figure 3 - Five 'spins' of roulette selection .. 10

Figure 4 - Two 'spins' of stochastic selection (each selecting five points) 11

Figure 5 - A generic contour graph showing a local maximum on the left and global maximum

on the right .. 11

Figure 6 – ((A + B) * C) represented as a tree .. 13

Figure 7 - Bar chart showing the relative fitness of low and high crossovers, on the data set

for the surface area of a torus ... 30

Figure 8 - Bar chart showing the relative fitness of low and high mutations, on the data set for

the surface area of a torus ... 31

Figure 9 - Bar chart showing the relative fitness of single and multiple mutations, on the data

set for the surface area of a torus ... 32

Figure 10 - Bar chart showing the relative fitness of 1, 3 and unlimited copies, on the data set

for the surface area of a torus ... 33

Figure 11 - Bar chart showing the relative fitness of refilling the pool or not, on the data set

for the surface area of a torus ... 34

Figure 12 - Bar chart showing the relative fitness of a small or large pool, on the data set for

the surface area of a torus ... 35

Figure 13 - Graph showing the convergence times for the volume of a cuboid 38

Figure 14 - Graph showing the convergence times for the volume of a pyramid 39

Figure 15 - Graph showing the convergence times for the volume of a torus 41

James Ashworth ES327

x

List of Tables

Table 1 - Approximations for 4𝜋2 as produced by the program ... 36

Table 2 - Equations and associated fitnesses for the circumference of a circle 37

Table 3 - Equations and associated fitnesses for the volume of a cuboid 38

Table 4 - Equations and associated fitnesses for the volume of a pyramid 40

Table 5 - Equations and associated fitnesses for the volume of a torus 42

James Ashworth ES327

Introduction

Purpose

This project was, at the highest level, to determine the feasibility of creating a program that

used genetic programming to solve arbitrary problems. This can be divided into four distinct

sections:

1. Initially, the language in which the program was to be written had to be decided. There

were three languages suggested (MatLab, Python, and Erlang), which are discussed in

detail under ‘Language Decision’ in the ‘Overview of Code Structure’ section.

2. Once chosen, the language had to be used to create the program, able to reliably cross

and mutate equations to match a data-set. The code itself should be documented and

logically laid out, with a focus on readability over efficiency. It should output the final

results and at least rudimentary data showing performance. There should be the

option to change most, if not all, of the rates and sizes through the use of parameters.

3. The program then needed to be tested, to verify that it could perform as required.

Multiple data sets would be required, to show that the program can solve many

problems. Ideally, an analysis showing how the program performs under different

combinations of parameters, for a minimum of one data set as well. At this stage, basic

geometry would be a reasonable area to begin.

4. Once the program was complete, it was to be evaluated to determine how it could

benefit the research group’s portfolio, and whether any further work would be

necessary to match the group’s requirements.

James Ashworth ES327

2

Conclusion

Having divided the purpose of the project into four sections, it seems reasonable to evaluate

the conclusion against those same four sections.

1. The language chosen, Erlang, has proven itself to be more than adequate for a project

of this type. The ability to generate multiple processes that can run independently and

return to a controlling thread allows the program to make maximum use of the

resources available.

2. The code written can be seen, in part, under ‘Overview of Code Structure’. The

majority of it has been documented in the report, and so in-line comments have been

removed. There are 16 parameters that can be changed to tune the program

according to requirements. The program outputs the final pool, with associated

fitnesses, and the maximum fitness from each generation.

3. The program has been tested on 6 separate data sets, all of which can be seen under

the heading ‘Results’. The first section is a parameter sweep across a single data set,

showing how the parameters interact with one another and what the effect is on the

data set, along with a discussion for each parameter. The second section is a shorter

trial against the remaining data sets, showing the solutions generated by the program,

and the number of generations required to achieve them.

4. Currently, Dr Higgins is attempting to fit the outcome of this project to a problem that

would be publishable in a peer-reviewed publication. Regardless, the program has

some improvements to be made (under the heading ‘Recommendation for Future

Work’), and the code will be carried forward on to more complex problems, beyond

the scope of a third year report.

James Ashworth ES327

3

Demonstration of IT Skills

This project has been written in Erlang, a parallel, functional programming language, using

Notepad++, with XML to give correct syntax highlighting. It has then been run and debugged

on the Erlang interpreter, supplied by Eriksson. The code itself has been uploaded to a GitHub

repository, allowing versioning and coding on multiple machines. The parameters and results

are stored in a Dropbox, allowing for multiple machines to run simulations to a single location.

This report has been written in Microsoft Word, with diagrams created using

https://www.draw.io/, Microsoft Excel, Wolfram|Alpha, and Mathematica.

https://www.draw.io/

James Ashworth ES327

4

Final Project Specification

Language Decision

Three languages were put forward – MatLab, Python, and Erlang – each with their own

benefits. One of these languages had to be chosen, although it was understood that, should

the selected language prove untenable early enough in the process, the decision could be

changed.

Understanding of GP

Dr Higgins was kind enough to suggest a couple of books and papers to read (Negnevitsky,

2005) (Bäck, Hammel, & Schwefel, 1997) (Nakano, Eckford, & Haraguchi, 2013). It was

expected that I would learn enough about Genetic Programming methodology to replicate it

in code, without going so far as to examine similar programs which may or may not be

effective.

Code Writing

The bulk of this project was planned to be the code writing and debugging. The project was

to be considered a success if any positive results could be achieved. The program was

expected to be functional sometime around the middle of Term 2. The code itself needed to

be written and commented clearly enough that it could be taken forward as part of another

project.

Presentation of Results

There were two main results requirements – a broad test of the program’s abilities, with

multiple data sets, and an in-depth look at how changing the parameters of the program

affected the results. These were to be included in the final report.

James Ashworth ES327

5

Literature Review / Theory

What is Genetic Programming?

Genetic Programming grew from the work of Nils Aall Barricelli, who started with evolutionary

algorithms. His initial work covered genetic algorithms, the progenitor of GPs, whereby a bit-

string representing a solution to a problem to be optimised is manipulated through cloning,

crossover and mutation (Barricelli, 1957). Following on from this work, Lawrence J. Fogel

applied GAs to finite-state automata (Fogel, Owens, & Walsh, 1966), which led to the first use

of the tree structure in genetic programming, by Nichael L. Cramer (Cramer, 1985). This work

was expanded on by John R. Koza, one of the main proponents of GP through the 1990s to

now, who has written multiple books on the topic (Koza, 1992) (Koza, 1994) (Koza, Bennett,

& Stiffelman, 1999) (Koza, et al., 2006). He is also the main benefactor of “The Humies”

awards, discussed later.

Today, Genetic Programming is a field of computation currently best suited to areas where

the general form of the solution is unknown (or the currently accepted form of the solution

is thought to be wrong. It should be used when the general form of the solution is the goal,

rather than an exact answer. It requires large amounts of test data, in computer readable

format, and ideally there is a system in place to determine the fitness of any given solution

(for example, in modelling – many simulators will be able to determine stresses and dynamics

of an object without being able to offer improvements) (Poli, Langdon, & McPhee, 2008, pp.

111-113).

The form of Genetic Programming that this project maps to is Symbolic Regression – namely,

determining a function that approximates an output given certain inputs. Existing examples

of GPs being used for Symbolic Regression include:

James Ashworth ES327

6

 The creation of a soft sensor – a function to predict the conditions at a location by

analysing the data at physical sensors nearby, where it would be difficult or expensive

to place a real sensor (Jordaan, Kordon, Chiang, & Smits, 2004).

 Controlling the movement of a robot arm – using the data generated from the robot’s

“eyes” to control the actuators in the arm (Langdon & Nordin, 2001)

 Synthesis of analogue circuits – creating a schematic (and in some cases, routing maps)

of amplifiers, mathematical operations (squares and square roots, cubes and cube

roots, logarithms, etc.), thermometers and more (Koza, Andre, Bennet, & Keane,

1999).

Since 2004, an annual competition looking for Human-Competitive results of GP (results that

either duplicate or improve on existing discoveries) called “The Humies” has been running

and has had several impressive results1:

 A GP-designed antenna for use on a NASA satellite (Lohn, Hornby, & Linden, 2004).

 Automatic production of quantum computer programs (Spector, 2004).

 A system for detecting features in images under different transformations (Trujillo &

Olague, 2006).

 A GP approach to finite algebras (Spector, Clark, Lindsay, Barr, & Klein, 2008).

 A GP approach to automated software repair (Forrest, Nguyen, Weimer, & Le Goues,

2009)

This is just a selection of the Gold Medal winners in the previous years – there have been

significantly more, and it is worth noting that these are only the ones submitted for the award.

1 http://www.genetic-programming.org/hc2011/combined.html (accessed 22/04/2014, 17:09)

http://www.genetic-programming.org/hc2011/combined.html

James Ashworth ES327

7

How does Genetic Programming work?

Pool

The pool is the (ordered) collection of candidate equations. Each generation will use the old

pool as a base, and will perform operations to generate a new pool.

Operations

Cloning

Cloning is the simplest of the operations – an equation is chosen from the current pool, and

placed into the new pool.

James Ashworth ES327

8

Mutation

Mutation takes an equation from the current pool, and picks a random element in the

equation (which could be a data-point, a constant, a variable or a function) and randomly

swaps it for another element. This project only mutates an element to one of the same type.

The mutated equation is then placed into the new pool.

Figure 1 – Mutation of ((A + B) * C) to ((A / B) * C)

James Ashworth ES327

9

Crossover

Crossover takes two equations from the current pool (which could be identical), and picks

random sections in each of them. These sections are then swapped between the two

equations, and each equation is placed in the new pool.

Figure 2 - Crossover of ((A + B) * C) and ((A - C) + (C * D))

James Ashworth ES327

10

Fitness

Once a new pool has been created, each item has to be evaluated so that the pool can be

ordered. This measure is very loosely defined, and can change depending on the required

result. The fitness function when looking for a short approximation will be different to the

function to find an exact match for a complex system.

Methods

These methods are the system by which each operation can choose equations to manipulate.

Roulette

Roulette is a random process. Each selection is independent of previous selections. Better

solutions are more likely to be chosen, but there is no guarantee that any given equation will

be chosen. The standard analogy is that of a single pointer on a divided wheel – each section

represents a candidate equation, with size equivalent to the fitness. Each selection is another

spin of the wheel.

Figure 3 - Five 'spins' of roulette selection

Stochastic

Stochastic is a more tightly controlled process. The analogy is N pointers (where N is the

number of candidates to be chosen in total), equally spaced over the same wheel as in

Roulette. The pointers are then spun as a group, and each pointer is then used to determine

a candidate equation. These equations are then placed in some sort of receptacle, from which

James Ashworth ES327

11

they are removed at random as required. This ensures that the best equation will be selected

(as the size of that segment will be at worst 1/Nth of the wheel).

Figure 4 - Two 'spins' of stochastic selection (each selecting five points)

Tournament

Tournament is a method of pool combination, and can be used in addition to either Roulette

or Stochastic. Without tournament, each previous pool is discarded in favour of the new pool.

With tournament, the previous pool and new pool are combined, and the best N results are

chosen to form the pool to be carried forward. This ensures that a particularly poor set of

operations cannot destroy the pool, but can lead to the pool becoming trapped in a local

maximum.

Figure 5 - A generic contour graph showing a local maximum on the left and global maximum on the right

James Ashworth ES327

12

Overview of Code Structure

Language Decision

Before the code could be written, the language needed to be chosen. There were three main

candidates at the start of this project:

 MatLab is possibly the worst suited to a project of this type, with regards to language

structure, but has libraries available for GPU support and is the best known by Dr

Higgins.

 Python is significantly better suited, although still requires additional libraries to be

suitable for the project, and is a language that I had some experience with.

 Erlang is a language that neither I nor Dr Higgins was aware of prior to the project, but

has features that translate very well, such as built-in parallelism and a pure functional

approach.

After some discussion, the decision was made to start with Erlang, with the option to re-

evaluate after having had a chance to try the language.

James Ashworth ES327

13

Representation of Equations

In this program, equations are represented as a list of elements, in Polish notation. Each

function (and associated arguments) is represented as a nested list within the equation. This

could equally be considered as a tree structure.

𝐴 × 𝐵 → [× [𝐴] [𝐵]]

(𝐴 + 𝐵) × 𝐶 → [× [+[𝐴] [𝐵]] [𝐶]]

Figure 6 – ((A + B) * C) represented as a tree

Representation of Elements within Equations

Each element is represented by a tuple (a data structure), giving its type (as an atom),

representation (as a string) and value (as a float, or a list of floats for each row of data).

Functions are represented in much the same way, except that they have a lambda function

defining the function that is to be performed on the operands and an arity (number of

operands).

1 = {variable, "1.0", 1.0}

𝜋 = {constant, "pi", 3.141}

radius = {data, "radius", [1.0, 2.0, 3.0]}

×= {function, fun(X, Acc) → Acc * X end, "*", 2}

James Ashworth ES327

14

Evaluation

Of Equations

An equation is evaluated X times, where X is the number of data rows in the dataset. Each

node is tested to determine whether it is a float. If the node is a function, each sub-node is

tested. If a function has only floats as sub-nodes, that function is then replaced in the

evaluation by the result of applying the function to the operands. If a node is a data-point,

the list element for this evaluation, x ≤ X, is taken as its value. In this way, the tree collapses

down to a single result. If at any point the evaluation encounters an error (such as divide-by-

zero, or a complex answer), the entire evaluation is returned as invalid. If the result returned

is 0, the evaluation is returned as invalid. The result is then compared to the expected result

for this evaluation, and the difference stored. Once all X runs are complete, the maximum

difference and the spread of differences is returned. The difference is a good indicator of how

close the equation is to correct, the spread is a good indicator of whether the data-points are

present to the correct powers.

Of the Pool

Once each equation has returned with a maximum difference and a spread of differences,

these values must be combined into a single fitness value. At the same time, the length of the

equation is determined. On initialisation, a weighting is given to difference, spread and length,

maximum values are given for difference and spread, and a range is given for length. Below

this range, the length-fitness is 1, above this range the length-fitness is 0, and within the range

is a linear progression. The difference and spread are then normalised between 1 and 0

(where 1 is best and 0 is worst). If any normalised fitness value is now 0, the overall fitness is

James Ashworth ES327

15

set to 0. If not, the three values are weighted, summed, and normalised to be between 1 and

0, and this is returned as the single fitness value for the equation.

Settings

The initial settings file reads in all of the required information: the location of the files

containing the initial pool, the functions to be used, the constants available and the data-set;

the pool-size and the levels of cloning, mutation (and the possibility of mutating again), and

crossover; the maximum depth to which equations should be generated (to make up any

disparity between the pool-size and the initial pool), whether the pool should be refilled

between generations to replace equations that are invalid or have been removed as

duplicates, and the maximum number of duplicates allowable for any equation (when set to

the pool-size or higher, no duplicates will be removed – when set to 1, each equation in the

pool must be unique); the cutoff values for difference, spread and length; and which files the

results will be written to, and whether to overwrite any existing files or append.

Output

Equation Formatting

On being written to file, equations are converted from Polish notation to infix notation.

[× [+[𝐴][𝐵]] [𝐶]] → ((𝐴 + 𝐵) × 𝐶)

To File

Two files are written: the output file contains the pool as of the final generation, in descending

order, with the fitness value for each equation; the tracking file contains the best fitness value

from each generation, so that the progress of the program over the generations can be

charted.

James Ashworth ES327

16

Separation of Functionality

Initialise

run_s(FileName) ->

 Date = date(),

 Time = time(),

 {A1, A2, A3} = now(),

 random:seed(A1, A2, A3),

 Settings = settings_file(FileName),

 io:fwrite("Settings Read",[]),

 erlang:spawn(initialise, cancel_monitor, [erlang:self()]),

 io:fwrite("~nGenerations Left:~n",[]),

 Results = operation:op_each_generation_s(settings_value(generations,

Settings),

 settings_value(numbers, Settings),

 settings_value(pool, Settings),

 settings_value(fcvsm, Settings),

 settings_value(fitnessVal, Settings),

 []),

 io:fwrite("~nWriting Logfiles~n",[]),

 output:output_to_file(settings_value(output, Settings), Date, Time,

Results).

This function is called to start the program. It logs the date and time the program was started,

reseeds the RNG (Random Number Generator) using the current time (as otherwise the seed

is the same for each run), reads in the full settings file, creates the cancel monitor process,

begins outputting progress to the screen and sends off the main body of the program. Once

the results are returned, it finishes by writing the logfiles.

cancel_monitor(PID) ->

 io:get_chars("(Press Enter to Cancel)", 0),

 erlang:send(PID, cancel).

 This function runs in parallel with the main program – it monitors the main input window for

the ‘enter’ key, and will send a cancel signal to the main program on receiving it.

settings_file(FileName) ->

 Params = filereader:read_settings_file(FileName),

 Constants = filereader:read_constant_file(key_value("constants",

Params)),

 Functions = filereader:read_function_file(key_value("functions",

Params)),

 Data = filereader:read_data_file(key_value("data", Params)),

 [Solution|Variables] = Data,

...

This is the first section of the function to read in the settings file – visible here is the initial

reading of the parameters and each other file specified in parameters.

James Ashworth ES327

17

generate_pool(Pool, Size, FCVSM) when is_list(Pool) ->

 Pool ++ generate_pool(length(Pool), Size, FCVSM);

generate_pool(Pool, Size, {Fs, Cs, Vs, Solution, _MultiMutation, MaxDepth})

when Pool < Size ->

 NewEquation = create_equation(Fs, Cs, Vs, MaxDepth),

 NewElement = {NewEquation, evaluator:evaluate(Solution, NewEquation)},

 if

 element(1, element(2, NewElement)) == invalid ->

 generate_pool(Pool, Size, {Fs, Cs, Vs, Solution, 0, MaxDepth});

 true ->

 [NewElement] ++ generate_pool(Pool+1, Size, {Fs, Cs, Vs,

Solution, 0, MaxDepth})

 end;

generate_pool(_Pool, _Size, _FCVSM) ->

 [].

This code increases the pool to the required size – the initial implementation had poor

memory usage due to the invalid equations being held on to. The new code (shown above) is

tail-recursive, so is more memory efficient.

do_create_equation(Fs, Cs, Vs, MaxDepth, FProb) ->

 if

 MaxDepth > 0 ->

 FChoice = random:uniform();

 true ->

 FChoice = 1.0

 End,

...

This is the initial section of the equation creation code. A function will be chosen if the value

of FChoice is lower than the probability of a function, FProb (assigned recursively). If the

equation is now at the maximum depth, FChoice is set to 1.0 – this will not be lower than

FProb, so a constant, data, or variable will be inserted. If not, a random FChoice between 0

and 1 is generated. If FChoice is lower, a function will be inserted at random and its arity

inspected. Depending on the arity, do_create_equation will be called recursively either once

or twice more, to create the operands.

James Ashworth ES327

18

Filereader

read_data_file(FileName) ->

 Return = file:read_file(FileName),

 if

 element(1, Return) == ok ->

 Binary = binary:bin_to_list(element(2, Return)),

 Rows = string:tokens(Binary, "\r\n"),

 Data = lists:map(fun(X) -> string:tokens(X, ",") end, Rows),

 DataT = data_transpose(Data),

 ToFloatFunc = fun(Z, Acc) ->

 lists:append(Acc,

[standard:std_string_to_float(Z)]) end,

 ToTuplesFunc = fun(Y) ->

 [Hy|Ty] = Y,

 {data, Hy, lists:foldl(ToFloatFunc, [], Ty)}

 end,

 lists:map(ToTuplesFunc, DataT);

 true ->

 error

 end.

This is an example of the code used to read in a file – specialised versions exist for each type

of file, although the basic principles demonstrated here are fairly unchanged. The file is read

in, in binary format. The binary is then turned into a string (a string in Erlang being a list of

characters), and broken by line break characters (using the Windows standard line break). In

the case of the data file, each row is then broken into elements by comma-separation. The

data now exists as a series of data rows, where each row is a record, including a row for

headers. As such, the data must be transposed, to create a series of column records, where

each column is a data-variable. The data must then be collated into tuples, which is done as

a batch by defining a lambda function which is then mapped across the entire data-set.

James Ashworth ES327

19

assemble_equation(Equation, Distance) when length(Equation) > 0 ->

 [H|T] = Equation,

 if

 Distance > 0 ->

 if

 element(1, H) == function ->

 assemble_equation(T, Distance + element(4, H) - 1);

 true ->

 assemble_equation(T, Distance - 1)

 end;

 true ->

 if

 element(1, H) == function ->

 if

 element(4, H) == 2 ->

 [H, assemble_equation(T, 0),

assemble_equation(T, 1)];

 true ->

 [H, assemble_equation(T, 0)]

 end;

 true ->

 [H]

 end

 end;

assemble_equation(_Equation, _Distance) ->

 error.

This code assembles a flat list of Polish notation elements into the nested list format used

elsewhere. Initially called with Distance = 0, it finds the first element. If the element is not a

function, it is returned as a sub-list. If the element is a function, it must be returned with its

arguments. For a function of arity 1, this is the next element, so it recurs with the remainder

of the flat list and Distance = 0. For a function of arity 2, however, it needs to be aware of the

possibility of a function as the first argument. It therefore recurs twice, once with Distance =

0, once with Distance = 1. When Distance > 0, if the next element is a function, its arity is used

to increase the count for recursion, so it can skip over any arguments to the sub-function.

Thus, the entire flat-list can be deconstructed and reconstructed as a nested list of expected

format. If the flat-list is longer than expected, it will be truncated. If it is shorter, the equation

will return with an error, and will be filtered out on evaluation.

James Ashworth ES327

20

Operation

op_each_generation_s(GensLeft, Numbers, Pool, FCVSM, Standard, Record) when

GensLeft > 0 ->

 output:write_gens_left(GensLeft),

 Total = lists:foldl(fun(X, Acc) -> Acc + element(2, X) end, 0, Pool),

 {CloneNo, CrossNo, MutateNo} = Numbers,

 Size = CloneNo + CrossNo + MutateNo,

 Offset = (Total / Size) * random:uniform(),

 Pointers = op_make_pointers(Size, Offset, Total / Size),

 [H|T] = op_each_operation_s(Numbers, Pool, FCVSM, Pointers),

 BestEq = element(1, lists:last(Pool)),

 Solution = element(4, FCVSM),

 Hold = [{BestEq, evaluator:evaluate(Solution, BestEq)}],

 if

 H == cancelled ->

 NewPool = standardise_pool(T ++ Hold, Standard, FCVSM),

 op_each_generation_s(0, Numbers, NewPool, FCVSM, Standard,

Record ++ [element(2, lists:last(NewPool))]);

 true ->

 NewPool = standardise_pool([H] ++ T ++ Hold, Standard, FCVSM),

 op_each_generation_s((GensLeft - 1), Numbers, NewPool, FCVSM,

Standard, Record ++ [element(2, lists:last(NewPool))])

 end;

op_each_generation_s(_GensLeft, _Numbers, Pool, _FCVSM, _Standard, Record)

->

 {Pool, Record}.

This is the stochastic version of the code run for each generation. The roulette version is

similar, but with some omissions because of the less complicated selection method. For each

generation, it writes to the screen to update progress. The total of the fitness values in the

pool is determine, and divided by the required number of pointers to get the separation

between pointers. The new pool is then generated through the operations. Once the new

pool is retrieved, a slight tournament bypass is utilised to maintain the best equation from

the previous pool (so that the best solution so far cannot be lost) and check for the cancel

signal. If it has been cancelled, this pool is standardised and it recurs with no remaining

generations. If not, it standardises and recurs with one fewer generation remaining.

James Ashworth ES327

21

op_each_operation_s({CloneNo, CrossNo, MutateNo}, Pool, FCVSM, Pointers)

when CrossNo > 0 ->

 Pointer1 = lists:nth(random:uniform(length(Pointers)), Pointers),

 PointersI = lists:delete(Pointer1, Pointers),

 Pointer2 = lists:nth(random:uniform(length(PointersI)), PointersI),

 PointersN = lists:delete(Pointer2, PointersI),

 _PID = erlang:spawn(operation, op_new_generation, [Pool, crossover,

FCVSM, erlang:self(), Pointer1, Pointer2]),

 NewPool = op_each_operation_s({CloneNo, (CrossNo - 2), MutateNo}, Pool,

FCVSM, PointersN),

 op_receiver(NewPool);

...

This is the first section of the operations code for stochastic. As before, roulette is similar but

does not require pointers, so will not be shown. This deals with crossover – mutation and

cloning follow. For each crossover, two pointers are removed at random from the list of

pointers, and a parallel sub-process is started to perform the crossover. It then recurs, until

all of the processes (of all types) have been started. As each sub-process finishes, it sends a

message back to the main process with its results. These messages are stacked until the main

process is ready to receive them, which it does on the way back up.

op_do_new_generation(Pool, Type, {_Fs, _Cs, _Vs, Solution, _MultiMutation,

_MaxDepth}, R1, _R2) when Type == clone ->

 Return = element(1, op_do_get_equation(Pool, R1)),

 {Return, evaluator:evaluate(Solution, Return)};

op_do_new_generation(Pool, Type, {Fs, Cs, Vs, Solution, MultiMutation,

_MaxDepth}, R1, R2) when Type == mutation ->

 Equation = op_do_get_equation(Pool, R1),

 A1 = trunc(R2 * 100),

 A2 = trunc(R2 * 10000) rem 100,

 A3 = trunc(R2 * 1000000) rem 10000,

 random:seed(A1, A2, A3),

 Return = op_mutation(element(1, Equation), Fs, Cs, Vs, MultiMutation,

random:uniform()),

 {Return, evaluator:evaluate(Solution, Return)};

...

This is the main body of the parallel sub-process that deals with cloning and mutation

(crossover follows). Cloning is very simple. An equation is selected, evaluated and returned.

Mutation, by comparison, is more complex because of the need to reseed the RNG for each

sub-process (otherwise each sub-process would have the same ‘random’ numbers). A random

number from the parent process is used to reseed – the first six decimal places are used to

James Ashworth ES327

22

generate three two-digit numbers for the seed. The selected equation is then mutated,

evaluated, and returned.

op_do_mutation(X, R1, Fs, Cs, Vs) when (R1 > 1) ->

 [Hx|Tx] = X,

 N = list_length(Hx),

 if

 N < R1 ->

 [Hx] ++ op_do_mutation(Tx, R1 - N, Fs, Cs, Vs);

 true ->

 [op_do_mutation(Hx, R1, Fs, Cs, Vs)] ++ Tx

 end;

op_do_mutation(X, _R1, Fs, Cs, Vs) ->

 [Hx|Tx] = X,

 if

 is_list(Hx) ->

 [op_do_mutation(Hx, 1, Fs, Cs, Vs)] ++ Tx;

 true ->

 if

 element(1, Hx) == function ->

 op_do_function_mutation(Hx, Tx, Fs);

 element(1, Hx) == constant ->

 [lists:nth(random:uniform(lists:flatlength(Cs)), Cs)];

 element(1, Hx) == data ->

 [lists:nth(random:uniform(lists:flatlength(Vs)), Vs)];

 element(1, Hx) == variable ->

 [op_do_variable_mutation(Hx)];

 true ->

 error

 end

 end.

This finds the location in the equation to be mutated in the first instance, then determines

the type of the element at that location. This element is then replaced with a random element

of the same type (nb: there is no guard against replacing it with the same element). In the

instance of variable mutation, the variable will be incremented, decremented, or left

unchanged.

James Ashworth ES327

23

op_do_crossover(X, Y, R1, R2) when (R1 > 1) ->

 [Hx|Tx] = X,

 N = list_length(Hx),

 if

 N < R1 ->

 [Hx] ++ op_do_crossover(Tx, Y, R1 - N, R2);

 true ->

 [op_do_crossover(Hx, Y, R1, R2)] ++ Tx

 end;

op_do_crossover(X, Y, R1, R2) when (R2 > 1) ->

 [Hy|Ty] = Y,

 N = list_length(Hy),

 if

 N < R2 ->

 op_do_crossover(X, Ty, R1, R2 - N);

 true ->

 op_do_crossover(X, Hy, R1, R2)

 end;

op_do_crossover(X, Y, _R1, _R2) ->

 [Hx|Tx] = X,

 [Hy|_Ty] = Y,

 if

 is_list(Hx) ->

 [op_do_crossover(Hx, Y, 1, 1)] ++ Tx;

 true ->

 if

 is_list(Hy) ->

 op_do_crossover(X, Hy, 1, 1);

 true ->

 Y

 end

 end.

This code is called with two equations and two random points. The first equation is

disassembled recursively until the first point is identified, then the second equation is

disassembled until the second point is identified. The first equation is then reassembled with

the second point embedded.

Evaluator

evaluate(Solution, Algorithm) ->

 No = lists:foldl(fun(_, Acc) -> Acc + 1 end, 0, element(3, Solution)),

 Fitnesses = do_evaluate(Solution, Algorithm, No),

 Check = lists:max(Fitnesses),

 if

 Check == invalid ->

 {invalid, 0, 0};

 true ->

 {lists:max(Fitnesses), lists:max(Fitnesses) –

lists:min(Fitnesses), length(lists:flatten(Algorithm))}

 end.

First the number of data rows is determined by using a basic accumulator across the solution

list. Then the equation is evaluated against these solutions, returning a list of values. This list

James Ashworth ES327

24

is checked for invalid responses, and, if any are found, returns an invalid tuple. Otherwise, the

worst value, the spread of values, and the length of the equation are returned in a tuple.

evaluate_fitness(Solution, Algorithm, No) ->

 Temp = lists:keyfind(data, 1, lists:flatten(Algorithm)),

 if

 Temp == false ->

 invalid;

 true ->

 Value = (catch do_compute(Algorithm, No)),

 if

 element(1, Value) == 'EXIT' ->

 invalid;

 Value == 0 ->

 invalid;

 true ->

 ExValue = lists:nth(No, element(3, Solution)),

 abs((Value - ExValue) / ExValue)

 end

 end.

Any form of data-point is searched for in the equation being checked. If not found, it is

returned as invalid immediately. A try-catch block is then used to compute the value of this

iteration – in the event of a divide-by-zero, a complex result, or some other unexpected error

the code returns an ‘EXIT’ tuple, and recovers (rather than crashing the process). If the value

is 0, the equation is marked as invalid (0 results are a problem for the fitness, being exactly

one expected result from the expected result at all times). Otherwise, it returns the

magnitude of how far from the expected value this iteration is, with regards to the expected

value.

James Ashworth ES327

25

do_compute([H|T], No) ->

 N = length(T),

 if

 N == 0 ->

 if

 element(1, H) == constant ->

 element(3, H);

 element(1, H) == variable ->

 element(3, H);

 element(1, H) == data ->

 lists:nth(No, element(3, H));

 true ->

 false

 end;

 N == 1 ->

 [T1|_] = T,

 lists:foldl(element(2, H), 0, [do_compute(T1, No)]);

 N == 2 ->

 [T1,T2|_] = T,

 lists:foldl(element(2, H), do_compute(T1, No), [do_compute(T2,

No)]);

 true ->

 false

 end.

This works recursively down the list, computing the value at each sub-node from the bottom

up. If the node is a function, we fold the lambda function over the following operands, once

they have been evaluated.

Output

printable([H|T], Brackets) ->

 N = length(T),

 if

 N == 0 ->

 if

 Brackets == true ->

 "(" ++ element(2, H) ++ ")";

 true ->

 element(2, H)

 end;

 N == 1 ->

 [T1|_] = T,

 element(3, H) ++ printable(T1, true);

 N == 2 ->

 [T1,T2|_] = T,

 "(" ++ printable(T1, false) ++ " " ++ element(3, H) ++ " " ++

printable(T2, false) ++ ")";

 true ->

 false

 end.

Another recursive function, this time to rearrange from Polish to infix notation. Any single

element is returned as is, either with or without brackets, depending on its parent function.

James Ashworth ES327

26

A function with a single argument is appended to its argument, with brackets around the

argument (ie [sin [𝑋]] becomes sin(𝑋)). A function with two arguments is placed between

its arguments, without brackets on the arguments but with brackets around the entire

function (ie [× [𝐴] [𝐵]] becomes (𝐴 × 𝐵)).

output_to_file({PoolFileName, TrackingFileName, OutMode}, Date, StartTime,

{Pool, Record}) ->

 if

 OutMode == "overwrite" ->

 PoolFile = element(2, file:open(PoolFileName, [write])),

 TrackingFile = element(2, file:open(TrackingFileName,

[write]));

 true ->

 PoolFile = element(2, file:open(PoolFileName, [append])),

 TrackingFile = element(2, file:open(TrackingFileName,

[append]))

 end,

 write_line([PoolFile, TrackingFile],

list_to_binary(integer_to_list(element(3, Date)) ++ "/" ++

integer_to_list(element(2, Date)) ++ "/"

++ integer_to_list(element(1, Date)))),

 write_line([PoolFile, TrackingFile],

list_to_binary(integer_to_list(element(1, StartTime)) ++ ":" ++

integer_to_list(element(2, StartTime)) ++ ":"

++ integer_to_list(element(3, StartTime)))),

...

Upon starting the output, the files must be opened. If the parameters specified overwriting

the files, they are opened in ‘write’ mode, which will erase the existing file and create a new

one. If anything other than “overwrite” is specified, the program appends for safety. The files

are initialised with the date and time that the program was started, and further down the

specialised functions export the data and tracking information to each file. Finally, the time

at which the process finished is printed, and the files are closed.

James Ashworth ES327

27

output_to_pool_file(OutputFile, Pool, Last) when (length(Pool) > 0) ->

 [H|T] = Pool,

 if

 H == Last ->

 output_to_pool_file(OutputFile, T, H);

 true ->

 output_to_pool_file(OutputFile, T, H),

 if

 element(2, H) > 0 ->

 write_partial_line([OutputFile],

float_to_binary(element(2, H)

* 1.0, [{decimals, 6}])),

 write_partial_line([OutputFile], <<" - ">>),

 write_line([OutputFile],

list_to_binary(printable(element(1, H))));

 true ->

 ok

 end

 end;

output_to_pool_file(_OutputFile, _Record, _Last) ->

 ok.

The tracking file is straightforward in that each value is output sequentially, whereas the pool

file has some additional post-processing. The records are stored in reverse order by fitness,

so the list is traversed and output is done from last to first on the way back up. Each record is

checked to ensure that it is different to the record before (records are sorted by fitness and

then by ‘alphabet’, so any identical records will be coincident) and that it has a fitness value

greater than zero (which may be the case for automatically generated records if the pool is

being refilled, as well as casualties of the final set of operations). If it passes both of these, it

is output with its fitness to file.

Standard

std_float_to_list(Value) ->

 float_to_list(Value, [{decimals, 10}, compact]).

This is a helper function to allow for changes across the program in terms of formatting. Here,

all floats are changed to have a maximum of 10 decimal places, with a minimum of one.

James Ashworth ES327

28

std_string_to_float(Value) ->

 Index = string:str(Value, "."),

 if

 Index > 0 ->

 element(1, string:to_float(Value));

 true ->

 element(1, string:to_float(string:concat(Value, ".0")))

 end.

This is a helper function to read in integers. Erlang’s string-to-float conversion gives an error

for an integer with no decimal point, so we look for a decimal point, and append “.0” if one

cannot be found before conversion.

James Ashworth ES327

29

Results

For the discussion sections, the same data-set (surface area of a torus) was run 288 times,

with every permutation of variables being run three times to reduce variance. Each output

was then ranked 1, 2, 3 or X. A rank of 1 was awarded for each run that produced the ‘perfect’

solution (4 × 𝜋 × 𝜋 × 𝑟 × 𝑅) or variants thereof (4 × 𝜋2 × 𝑟 × 𝑅 and (2 × 𝜋)2 × 𝑟 × 𝑅, as

well as permutations on these), a rank of 2 was awarded for a ‘perfect’ solution with

additional ‘do nothing’ sections (𝑁1, 𝑁 × 1, 𝑁 + 0, etc.), and a rank of 3 was awarded for any

solution that approximated 4𝜋2 to within 1% accuracy. All other solutions were ranked ‘X’,

and are considered to be failures (within the generation-limit imposed). All trials were given

106 operations – therefore the ‘large’ pool of 1,000 equations was given 1,000 generations,

and the ‘small’ pool of 100 equations was given 10,000 generations.

Roulette vs Stochastic Discussion

The decision was made to use Stochastic after discussion with my supervisor, due to its

inability to accidentally regress (Roulette being able to exclude the best solution, the chance

of which increases with the number of generations).

James Ashworth ES327

30

High Crossover vs Low Crossover

Figure 7 - Bar chart showing the relative fitness of low and high crossovers, on the data set for the surface area of a torus

From the results obtained we can see that low and high crossover both give a similar failure

rate, but low crossover is better for finding an exact solution (where one exists), and high

crossover is better for finding an approximation.

James Ashworth ES327

31

High Mutation vs Low Mutation

Figure 8 - Bar chart showing the relative fitness of low and high mutations, on the data set for the surface area of a torus

This chart shows that, while a low rate of mutation is more likely to give an unusable result,

it also has a higher chance of finding the best solution. As with crossover, higher mutation is

better for generating an approximate solution.

James Ashworth ES327

32

Multiple Mutation vs Single Mutation

Figure 9 - Bar chart showing the relative fitness of single and multiple mutations, on the data set for the surface area of a
torus

When the possibility of mutating a solution a second time (or more) is introduced, we reduce

the probability of finding the optimum solution but increase the probability of having a usable

result, and giving a good approximation.

James Ashworth ES327

33

No Duplicates vs Limited Duplicates vs Unlimited

Figure 10 - Bar chart showing the relative fitness of 1, 3 and unlimited copies, on the data set for the surface area of a
torus

An intermediate number of duplicates gives the highest chance of producing the correct

answer and giving a good approximation, but is significantly less likely to give a solution that

merely requires simplification to be considered optimum than a pool composed of unique

solutions. Removing the limit introduces the possibility of monotonicity, and does not have a

clear advantage in any area. It is worth noting that the number of duplicates required for any

data set will vary depending on the pool size chosen.

James Ashworth ES327

34

Refilling Pool vs Not

Figure 11 - Bar chart showing the relative fitness of refilling the pool or not, on the data set for the surface area of a
torus

The results set suggests that whether the pool is refilled or not makes very little difference to

the quality of the results. In most instances, the generated equations will be of low fitness in

comparison with the existing pool, apparently to the point that they are, for all intents and

purposes, a waste of processing power.

James Ashworth ES327

35

Large Pool vs Small Pool

Figure 12 - Bar chart showing the relative fitness of a small or large pool, on the data set for the surface area of a torus

In comparison with the previous analyses, the question of pool size has a very definite answer.

A small pool is much more likely to produce unusable results, and less likely to harbour a

correct result. As such, the pool size should be the maximum that can be handled by the

hardware available.

James Ashworth ES327

36

Approximations for 4𝜋2 (39.478418, 6d.p.)

Equation Representation Value Offset (%)

1
377𝜋

30
 39.479348 0.00235591

2
65𝑒 + 455

16
 39.480520 0.00532525

3 3𝑒𝜋 + 3𝜑 + 9 39.473305 0.01295130

4 5𝜑2 + 5𝑒 + 15 39.483697 0.01337282

5 4𝜑 + 33 39.472136 0.01591160

6 6 × 2𝑒 39.485316 0.01747370

7 𝑒(5𝜑 + 1) 39.467805 0.02688256

8 9𝑒 + 15 39.464536 0.03516136

9
88𝜋

7
 39.494308 0.04024994

10 𝜋𝜋 + 3 39.462160 0.04118199

11
6𝑒𝜋

𝜑
+

12𝑒𝜋

5𝜑2
 39.495608 0.04354315

12 39.5 39.500000 0.05466885

Table 1 - Approximations for 𝟒𝝅𝟐 as produced by the program

Many of these approximations are random, and it is coincidental that they are a good fit for

4𝜋2. Equation [9], however, is equivalent to the original Ancient Egyptian approximation for

𝜋, of
22

7
, and equation [1] is close to the 4th approximation of the continued fractional

representation of 𝜋,
355

113
2.

2 http://en.wikipedia.org/wiki/Approximations_of_%CF%80 (accessed 14/04/14, 16:17)

http://en.wikipedia.org/wiki/Approximations_of_%CF%80

James Ashworth ES327

37

Circumference of a Circle

Convergence Times

In the second and third runs, the best solution was one of the originally generated solutions.

In the first run, it took a single generation to arrive at the optimum solution.

Final Output

P
o

si
ti

o
n

1st Run 2nd Run 3rd Run

Equation Fitness Equation Fitness Equation Fitness

1 𝜋(𝑟 + 𝑟) 1.00000 2𝜋𝑟 1.00000 2𝑟𝜋 1.00000

2 𝑟(𝜋 + 𝜋 + 𝑟−7𝑟𝑟

) 1.00000 𝑟(5 + 𝑒
21

8) 0.99987 2𝑟(𝜋 −
𝑟

𝑟6𝜑) 0.99999

3 𝑟(𝜋 + 𝜋 + 𝑟−7𝑟×𝑟
) 1.00000 𝑟(5 + 𝑒

20

4) 0.99987 2𝑟(𝜋 −
5

𝑟4𝑒) 0.99999

4 𝑟(𝜋 + 𝜋 + 𝑟−7𝑟+𝑟
) 1.00000 𝑟(5 + 𝑒

10

4) 0.99987 2𝑟(𝜋 −
𝜋

𝑟6𝜑) 0.99999

5 𝑟(𝜋 + 𝜋 + 𝑟−6𝑟𝑟

) 1.00000 𝑟(5 + 𝑒
1−1

4) 0.99987 2𝑟(𝜋 −
1

(6 × 6)𝑟
) 0.99999

Table 2 - Equations and associated fitnesses for the circumference of a circle

It is worth noting that the minimum radius in this data set was 3.2 – as such, 𝑟−6/7 is negligible

under these conditions. For radii less than one, this term would become increasingly large,

making this a poor choice, but this can only be determined through comparison to the actual

formula.

James Ashworth ES327

38

Volume of a Cuboid

Convergence Times

Figure 13 - Graph showing the convergence times for the volume of a cuboid

All three runs stabilised in 25 generations or fewer – it is just visible that the third run is

marginally higher than the other two, due to the reduced number of elements in the final

equation.

Final Output

P
o

si
ti

o
n

1st Run 2nd Run 3rd Run

Equation Fitness Equation Fitness Equation Fitness

1
𝑑

1 ÷ (𝑤 × ℎ)
 1.00000

𝑤 × ℎ

1 ÷ 𝑑
 1.00000 ℎ × 𝑤 × 𝑑 1.00000

2 (𝑤 × 𝑑)[1] × ℎ 1.00000
𝑤 × ℎ

[1] ÷ 𝑑
 1.00000 ℎ × 𝑑[1] × 𝑤 1.00000

3 (𝑤 × 𝑑)[1] × ℎ 1.00000
𝑤 × ℎ

[1] ÷ 𝑑
 1.00000 ℎ × 𝑑[1] × 𝑤 1.00000

4 (𝑤 × 𝑑)[1] × ℎ 1.00000
𝑤 × ℎ

[1] ÷ 𝑑
 1.00000 ℎ × 𝑑[1] × 𝑤 1.00000

5 (𝑤 × 𝑑)[1] × ℎ 1.00000
𝑤 × ℎ

[1] ÷ 𝑑
 1.00000 ℎ × 𝑑[1] × 𝑤 1.00000

Table 3 - Equations and associated fitnesses for the volume of a cuboid

A very good set of results here – a lack of constants makes the program much more effective,

because there is nothing for it to approximate. This is the first instance of [1] indicating a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

Run 1

Run 2

Run 3

James Ashworth ES327

39

complex expression that is always 1. In every instance here, the expression is 𝑋0, as this is the

most likely to still be 1 after mutation. Any instance of
𝑋

𝑋
, for instance, can be upset by

mutating either top or bottom.

Volume of a Square-Based Pyramid

Convergence Times

Figure 14 - Graph showing the convergence times for the volume of a pyramid

This graph shows that the maximum time taken to settle at a result was 50 generations. We

can also see that the first run was stable – it managed to find a local maximum from the

criteria given, and was unable to escape.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

Run 1

Run 2

Run 3

James Ashworth ES327

40

Final Output
P

o
si

ti
o

n

1st Run 2nd Run 3rd Run

Equation Fitness Equation Fitness Equation Fitness

1
𝑏

12 × 1111
 0.00000

𝑏 × 𝑏

3 ÷ ℎ
 1.00000

𝑏

(3 ÷ 𝑏) ÷ ℎ
 1.00000

2
ℎ

9 × 1111
 0.00000

𝑏 × 𝑏

[1] × 𝜋 ÷ ℎ
 0.95280

𝑏

(3 ÷ ([0] + 𝑏)) ÷ ℎ
 1.00000

3
ℎ

8 × 1111
 0.00000

𝑏 × 𝑏

[1] × 𝜋 ÷ ℎ
 0.95280

𝑏

(3 ÷ ([0] + 𝑏)) ÷ ℎ
 1.00000

4
𝑏

7 × 1111
 0.00000

𝑏 × 𝑏

[1] × 𝜋 ÷ ℎ
 0.95280

𝑏

(3 ÷ ([0] + 𝑏)) ÷ ℎ
 1.00000

5
ℎ

7 × 1111
 0.00000

𝑏 × 𝑏

[1] × 𝜋 ÷ ℎ
 0.95280

𝑏

(3 ÷ ([0] + 𝑏)) ÷ ℎ
 1.00000

Table 4 - Equations and associated fitnesses for the volume of a pyramid

The first run has failed, by approximating all of its results to (almost) 0. This satisfies one of

the fitness metrics – that the equation should be as good for all points in the data-set. This

indicates two things: the cut-off value (how many orders of magnitude away the result can

be) should be set to less than 1; and the weighting of the spread metric should be revised

downwards. However, all three were running under the same parameters, so this is not

guaranteed to fail as it is. In the second run, [1] indicates that there was a complicated section

that always evaluated to 1, eg. (7
𝑒

3𝜑−𝑏)
0

. As such, it was able to produce the same result an

arbitrary number of times by altering the terms within the 0 power. In the third run, [0]

indicates a complicated section that evaluated to (almost) 0, eg. 5
9−38

𝑏 . Again, it was able to

generate multiple results by changing these terms.

James Ashworth ES327

41

Volume of a Torus

Convergence Times

Figure 15 - Graph showing the convergence times for the volume of a torus

This run achieved stability after 50 generations, as with the square-based pyramid, but with

all three finding a suitable answer. The first run can be seen slightly below the other two, due

to being slightly more complex.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

Run 1

Run 2

Run 3

James Ashworth ES327

42

Final Output

The data set as originally computed was in fact for
volume

𝜋
 due to an oversight, so all equations

are evaluated on the assumption that they are missing a factor of 𝜋.

P
o

si
ti

o
n

1st Run 2nd Run 3rd Run

Equation Fitness Equation Fitness Equation Fitness

1 𝑅𝑟𝑟3 (𝜋 −
𝜋

3
) 1.00000 𝑟𝑟𝜋2𝑅 1.00000 𝑟2𝑟𝑅𝜋 1.00000

2 𝑅𝑟𝑟3 (𝑒 −
1

𝑒−9𝜑÷12𝑒
) 0.99995

𝑟𝑟𝑅 (
𝜋

𝜑([1] + 𝑒 + 𝜋)

+ 6)
0.99998 𝑟𝑟𝑅(

𝜋

𝑒(1 + 𝜋)
+ 6) 0.99934

3
𝑅𝑟𝑟3 (𝑒

−
1

𝑒−6𝑒÷(42+𝑒)
)

0.99993
𝑟𝑟𝑅 (

𝜋

𝜑([1] + 𝑒 + 𝜋)

+ 6)
0.99998 𝑟𝑟𝑅(

𝑒

2(2 + 𝑒)
+ 6) 0.99922

4 𝑅𝑟𝑟3 (𝑒 −
1

𝑒−6𝑒÷45
) 0.99979

𝑟𝑟𝑅 (
𝜋

𝜑([1] + 𝑒 + 𝜋)

+ 6)
0.99998 𝑟𝑟𝑅(

5

18
+ 6) 0.99914

5
𝑅𝑟𝑟3 (𝑒

−
1

𝑒−7𝜋÷(54+𝑒)
)

0.99795
(

3

𝜋(𝜑 ÷ (4 + 𝜋) + 𝜋)

+ 6) 𝑟𝑟𝑅

0.99995 𝑟𝑟𝑅(
10

11𝜋
+ 6) 0.99902

Table 5 - Equations and associated fitnesses for the volume of a torus

As with the surface area of the torus, we have some interesting approximations for 2𝜋 being

created. It is interesting that the second and third runs both approximate 2𝜋 as ‘six-and-a-

bit’. The second run utilises [1] as a placeholder for a more complex expression that is always

equivalent to 1.

James Ashworth ES327

43

Results Analysis

From the results, we can determine firstly that the program is functional – in almost every

case it found the correct solution, along with variations and approximations. In the one

instance that the program failed, it was allowed to by a possibly poor choice of parameters.

We can also see how complexity affects the run-time of the program – the fairly simple 2𝜋𝑟

was either generated in the initial step, or arrived at within the first few generations, whereas

the volume of a cuboid, involving three independent variables, required 25 generations and

the volume of a torus, involving two independent variables, a power and a constant, took 50.

Without doing further simulations with more complex data and more generations, it is

difficult to estimate the level of scaling we can expect.

We can also see that for these relatively simple problems, a lot of the available parameters

are not necessarily relevant. Many of these are likely to come into play if further work is done,

as recommended, on more complex areas. Tuning the program will then be of more

relevance, as the computational power required approaches the limits, and optimisation

becomes necessary.

The tendency of the program to use approximations rather than the unity factor is dependent

on the length boundary and the weighting given – the expressions which evaluate to 1 tend

to balloon, which reduces the fitness of the equation – and whether or not the formula has a

constant to be approximated. For the purpose of this report, all simulations had the same

(low) weighting given to length as a factor.

James Ashworth ES327

44

Conclusions

Language Decision

The decision was made to use Erlang, despite unfamiliarity with it, and, having worked with

it for over six months, I have had no problems with it. The documentation made available by

Eriksson is comprehensive, and the language itself is consistent. No bugs have been found

other than those introduced by myself. I would be surprised if MatLab or Python would have

been so smooth, using external libraries that may or may not have been debugged properly.

Understanding of GP

I now have a fairly full understanding of Genetic Programming. I would by no means say that

I have perfect knowledge on the subject, but I certainly understand the basics and some of

the more complicated methodologies of the topic.

Code Writing

The code was finished near the end of Term 2, only slightly behind schedule. A large part of

the code itself is visible in this report, and it can be seen that the function names are

representative of their operation. The comments have been stripped out to save space in this

report, given that each block of code has been explained beneath, but the full source code

has comprehensive comments. At this point in time, the program is able to successfully solve

data sets of at least medium complexity very regularly.

James Ashworth ES327

45

Presentation of Results

All output has been formatted to be slightly more readable, but retains the same basic

structure as output by the program. The results are in two sections: an in-depth view of how

the parameters affect the operation of the program, covering 96 different combinations,

across six different parameters; and an overview of the output of five other data sets, showing

the fitnesses and outputs, and the number of generations required to converge in each case.

Costing

Supervisor Time

14 × 30 minute meetings = 7 hours

7 hours × £50 / hour = £350

Technician Time

n/a

Student Time

300 hours × £15 / hour = £4500

Printing Costs

2 × 72 pages = 144 pages

144 pages × 20p / page = £28.80

Total Project Cost

£4878.80

James Ashworth ES327

46

Recommendation for Further Work

The project as documented here is entirely functional, but there are multiple ways in which it

could be improved. Currently, the lack of Graphical User Interface combined with strict

requirements on the format of the parameters file make it a very fragile system to those who

are not versed in its eccentricities. Relaxing the formatting of the parameters file would

produce a lot of code that compensates for possible user error, so a GUI would seem a more

prudent solution, but there are two serious issues: A GUI leads to the possibility of a mismatch

whereby an option removed from the program is still included in the GUI, leading to confusion

for the user; and it becomes possible for a newly included parameter to be omitted from the

GUI, and thus not be defined for the program running, leading to possible errors, crashes, and

undefined output.

With regards to display, the current progress report is a countdown until the generational

limit is reached. Showing the user the current best solution(s) and associated fitness(es)

would allow the user to make an informed decision as to whether the simulation can be

terminated early or should be allowed to run its course.

There are three improvements in functionality that I would recommend initially. Firstly, the

single best result is carried from generation to generation, in tournament style. However,

being able to define the depth of this carry and implementing a fuller tournament system

would be desirable. Secondly, the language in which the program is written is designed for

parallel processing across a cluster, and, at the time of writing, the program is restricted to

the local machine. Extending the spawning process to utilise a wider environment would

require a stable network (any lost processes currently stall the program completely) or

compensation for that possibility, but could significantly reduce run-times by spreading the

James Ashworth ES327

47

load. Finally, the current system has no way of simplifying a final result. Unity gain, adding

and subtracting the same variable, and spurious elements (such as adding insignificantly small

values) all reduce the probability of identifying the best solution, as they are a numerical

match for the dataset. By adding in a post-processing step to eliminate these possibilities the

output becomes cleaner and more precise.

In terms of the analysis performed in this report, the program has been put through its paces

to determine that it is functional, but has not been stretched. More complex data sets are

beyond the scope of the current project, but should be considered for the future. Another

useful feature to aid in analysis would be the logging of (or ability to log) all fitnesses, or an

average fitness among the top N results.

James Ashworth ES327

48

Code of Ethics and Professional Conduct

All work not performed by myself has been referenced and attributed to the original authors.

All data sets used were created personally. All code for this project has been written from

scratch, or is included in the Erlang environment, and as such is covered by the Erlang Public

License, which grants permission for usage, reproduction, modification, display, performance,

sublicensing and distribution3.

3 http://www.erlang.org/EPLICENSE (accessed 20/04/14, 17:32)

http://www.erlang.org/EPLICENSE

James Ashworth ES327

49

Bibliography

Bäck, T., Hammel, U., & Schwefel, H.-P. (1997). Evolutionary Computation: Comments on the

History and Current State. IEEE Transactions on Evolutionary Computation, 3-17.

Barricelli, N. A. (1957). Symbiogenetic evolution processes realized by artificial methods.

Methodos.

Cramer, N. L. (1985). A representation for the adaptive generation of simple sequential

programs. Proceedings of the First International Conference on Genetic Algorithms,

183-187.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intelligence through simulated

evolution. John Wiley and Sons.

Forrest, S., Nguyen, T., Weimer, W., & Le Goues, C. (2009). A genetic programming approach

to automated software repair. Proceedings of the 11th Annual conference on Genetic

and evolutionary computation, 947-954.

Jordaan, E., Kordon, A., Chiang, L., & Smits, G. (2004). Robust inferential sensors based on

ensemble of predictors generated by genetic programming. Parallel Problem Solving

from Nature - PPSN VIII, 522-531.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of

natural selection. MIT Press.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. MIT

Press.

James Ashworth ES327

50

Koza, J. R., Andre, D., Bennet, I. F., & Keane, M. (1999). Genetic Programming 3: Darwinian

Invention and Problem Solving. Morgan Kaufman.

Koza, J. R., Bennett, I. F., & Stiffelman, O. (1999). Genetic Programming as a Darwinian

Invention Machine. Berlin Heidelberg: Springer.

Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Lanza, G., & Yu, J. (2006). Genetic

programming IV: Routine Human-Competitive Machine Intelligence. Springer.

Langdon, W. B., & Nordin, P. (2001). Evolving hand-eye coordination for a humanoid robot

with machine code genetic programming. Genetic Programming, Proceedings of

EuroGP’2001, 313-324.

Lohn, J., Hornby, G., & Linden, D. (2004). Evolutionary antenna design for a NASA spacecraft.

In e. a. U.-M. O'Reilly, Genetic Programming Theory and Practice II (pp. 301-315). Ann

Arbor: Springer.

Nakano, T., Eckford, A. W., & Haraguchi, T. (2013). Molecular Communication. Cambridge

University Press.

Negnevitsky, M. (2005). Artificial intelligence: a guide to intelligent systems. Pearson

Education.

Poli, R., Langdon, W. B., & McPhee, N. F. (2008). A Field Guide to Genetic Programming.

Spector, L. (2004). Automatic Quantum Computer Programming: A Genetic Programming

Approach. Kluwer Academic.

James Ashworth ES327

51

Spector, L., Clark, D. M., Lindsay, I., Barr, B., & Klein, J. (2008). Genetic Programming for Finite

Algebras. Proceedings of the 10th annual conference on Genetic and evolutionary

computation, 1291-1298.

Trujillo, L., & Olague, G. (2006). Using evolution to learn how to perform interest point

detection. ICPR 2006 18th International Conference on Pattern Recognition, 211-214.

James Ashworth ES327

Appendix 1: Full Table of Results

Problem Crossover Mutation
Multiple

Mutations
Duplicate
Number

Refill Pool Pool Size
Generations

1 2 3

Torus
Surface

Area
Low Low

No

1

No
100 2 3 2

1000 3 X 2

Yes
100 3 2 3

1000 2 3 2

3

No
100 2 X 2

1000 1 1 3

Yes
100 2 1 X

1000 2 1 3

No Limit

No
100 2 3 3

1000 X 1 3

Yes
100 X 2 1

1000 X 1 1

Yes

1

No
100 3 2 3

1000 2 3 X

Yes
100 X 2 2

1000 X X 1

3

No
100 3 X 3

1000 3 3 3

Yes
100 3 X 3

1000 1 1 1

No Limit

No
100 3 3 X

1000 1 1 1

Yes
100 2 X 3

1000 1 3 3

James Ashworth ES327

53

Problem Crossover Mutation
Multiple

Mutations
Duplicate
Number

Refill Pool Pool Size
Generations

1 2 3

Torus
Surface

Area
Low High

No

1

No
100 3 3 2

1000 3 3 X

Yes
100 2 3 1

1000 2 1 3

3

No
100 3 2 1

1000 2 1 2

Yes
100 3 3 3

1000 3 X 3

No Limit

No
100 X X 3

1000 X 1 X

Yes
100 X 3 X

1000 1 X X

Yes

1

No
100 X 2 2

1000 1 3 2

Yes
100 2 X 3

1000 3 3 3

3

No
100 X 3 X

1000 1 2 3

Yes
100 2 3 3

1000 X 1 3

No Limit

No
100 X X 3

1000 1 3 2

Yes
100 X X 1

1000 3 1 1

James Ashworth ES327

54

Problem Crossover Mutation
Multiple

Mutations
Duplicate
Number

Refill Pool Pool Size
Generations

1 2 3

Torus
Surface

Area
High Low

No

1

No
100 2 X 1

1000 X X 2

Yes
100 1 2 3

1000 1 3 3

3

No
100 1 X 1

1000 3 X 1

Yes
100 3 X X

1000 2 1 1

No Limit

No
100 X 3 3

1000 3 2 1

Yes
100 X X X

1000 3 2 3

Yes

1

No
100 3 3 2

1000 X 3 1

Yes
100 3 3 3

1000 X 2 2

3

No
100 X 3 X

1000 3 3 X

Yes
100 2 2 3

1000 3 X 3

No Limit

No
100 3 X 3

1000 X 3 3

Yes
100 X 3 2

1000 X 2 X

James Ashworth ES327

55

Problem Crossover Mutation
Multiple

Mutations
Duplicate
Number

Refill Pool Pool Size
Generations

1 2 3

Torus
Surface

Area
High High

No

1

No
100 2 3 1

1000 X 2 2

Yes
100 X X X

1000 X 3 1

3

No
100 3 1 2

1000 3 3 2

Yes
100 3 3 X

1000 3 3 3

No Limit

No
100 X X 3

1000 2 3 3

Yes
100 3 2 X

1000 X 3 3

Yes

1

No
100 3 2 3

1000 2 3 3

Yes
100 2 2 2

1000 3 3 3

3

No
100 3 3 X

1000 2 3 2

Yes
100 2 3 2

1000 3 X 1

No Limit

No
100 3 3 3

1000 2 1 3

Yes
100 3 3 1

1000 3 2 3

James Ashworth ES327

Appendix 2: Commit Log and Statements

Thu Mar 20 17:19:03 2014 +0000
Ability to Change Directory
We now change directory so that the data etc. can be stored more logically, and access by
relative paths.

Thu Mar 20 17:17:25 2014 +0000
Removing Chaff
Data etc. moved to Dropbox, removed from repo.

Thu Mar 6 11:59:28 2014 +0000
Tab Alignment Fix
Some functions were misaligned - no more!

Tue Mar 4 16:56:53 2014 +0000
Equation Assemble Error
Now handles an incorrect equation in the pool file, rather than error-ing.

Thu Feb 20 00:05:11 2014 +0000
Best Result Hangover
Best Result from each generation now definitely carried over, so that the best result can’t be
lost.

Wed Feb 19 23:56:24 2014 +0000
String to Float Abstracted
Abstracted String to Float to my own function to include integers.

Tue Feb 18 02:32:58 2014 +0000
Collapsed Parameters, Cancellation
Collapsed down parameters for easier passing.
Spawned a cancel monitor which leaves a floating prompt offering the opportunity to cancel
out at any time, and see results as at that point.

James Ashworth ES327

57

Tue Feb 18 02:31:29 2014 +0000
Added New Parameters, Cleared Pool
Parameters are now up to date with code.
Pool is clear for reasons.

Tue Feb 18 02:30:55 2014 +0000
Parameter Collapse, Output Trim
Parameters have been collapsed slightly.
Equations with fitness 0 are no longer written to the output, due to being uninteresting.

Tue Feb 18 02:30:02 2014 +0000
Collapsed Parameters, Abstracted Receiver, Added Cancel, Remove Duplicates, Refill Pool,
Multiple Mutation
Parameters have been collapsed into tuples for passing.
Receiver has been abstracted to allow for possible recursive calls.
Cancellation is now possible - current generation will complete then file will be written.
Duplicates beyond a certain number will now be removed to maintain the integrity of the
pool.
Pool now has the option of being refilled with randomly generated equations to stay 'fresh'.
Mutations now have the chance to 're-mutate' one or more times.

Tue Feb 18 02:25:55 2014 +0000
Collapsed Parameters for Easier Modification
Parameters are now collapsed into tuples so that they can be passed through the system to
where they're needed as a group, rather than having to be modified in every intermediate
location.

Mon Feb 17 00:59:06 2014 +0000
Display, OutMode, MaxDepth
Now displays when the setup is done, sets up the generation counter and announces when
finished.
Reads in and passes through the overwrite/append state for the output files.
Initial pool generation now has set maximum depth to prevent out-of-control equation
generation killing the memory.

Mon Feb 17 00:56:17 2014 +0000
Corrections
Changed data file to be floats which was breaking all the things.
Changed pool file to have the answer as a test.
Changed parameters to group output files at the end and add the outmode / maxDepth.

Mon Feb 17 00:55:03 2014 +0000
Mode, Floats and Display
Now have the option to overwrite or append the output files.
Outputs are now multiplied by 1.0 so that float_to_list doesn't get an integer and flip out.

James Ashworth ES327

58

Mon Feb 17 00:52:53 2014 +0000
Consolidation and Rework + Display
Now rejects any records that miss any criteria rather than just weighted criteria, and
consolidated to keep logic in one place to avoid half-changes.
Added a display for generations left to stdout.

Mon Feb 17 00:50:46 2014 +0000
Evaluator Non-Zero
The evaluator now rejects answers of 0. They skew the spread analysis, have a very fixed miss
magnitude and will screw up elsewhere. Marked as invalid.

Thu Feb 13 18:31:27 2014 +0000
Pool Generation Adapted
Pool generation adapted to be marginally less memory intensive.

Thu Feb 13 18:28:44 2014 +0000
Add Output Files to .gitignore
Changed output files to .out.csv for easier recognition, and added to ignore.

Thu Feb 13 18:27:33 2014 +0000
Clear Pool
Just because...

Tue Feb 11 21:25:24 2014 +0000
Updated Parameters + Change of Data
Parameters now include tracking file and weightings.
Data now split into volume and circumference, for variety.

Tue Feb 11 21:22:52 2014 +0000
Output Split
Output is now split into two files - Tracking and Output.
Tracking has the best fitness from each generation for graphing progress.
Output has the final pool and respective fitnesses in order from best to worst.

Tue Feb 11 21:21:56 2014 +0000
Fitness Weighting + List Reversal
Fitnesses are now calculated using weightings and cutoffs from the parameters file.
Lists were interpreted the wrong way round - best result is last, not first as was used
beforehand.

Tue Feb 11 21:20:37 2014 +0000
New Output File + New Settings
Fitness weighting and cutoffs are now read from the parameters file.
Generation fitnesses now stored in tracking file, with pool dumped to output on finish.

James Ashworth ES327

59

Tue Feb 11 21:19:19 2014 +0000
Upgrade to Evaluation
Evaluator now returns the fitness value, the spread of values and the length of the equation
for processing.

Thu Jan 30 16:36:53 2014 +0000
Output
Now outputs final best result and list of highest fitness values to file specified in
testparameters.csv. File must be sans path for now.

Thu Jan 30 16:35:41 2014 +0000
Record of progress
Best result in each generation now recorded for output at end, for tracking.

Tue Jan 21 17:54:50 2014 +0000
Stochastic Implemented
Stochastic implemented - point choosing abstracted further up to allow for stochastic to
utilise previous code.

Tue Jan 21 17:28:10 2014 +0000
Introduce Stochastic vs Roulette, Even Crossover Rate
Two methods of running - stochastic and roulette. Only change here is calling different
functions in operation.
If crossover is odd, steal one from clone to avoid throwing stochastic off.

Tue Jan 21 17:26:08 2014 +0000
Output Creation
Procedure to organise equations into printable form.

Fri Jan 10 23:43:34 2014 +0000
Messaging, Standardising and Integers
Messaging and new generations now in place.
Standardising now tesseracts the value, to better differentiate the top end of equations.
Now using integers in equations, rather then arbitrary floats. Mutation does +-1 now.

Fri Jan 10 23:30:56 2014 +0000
New Procedure 'Run'
Gets the parameters and launches into the progamme.

Fri Jan 10 23:25:42 2014 +0000
Change run conditions
Less clone, more crossover and mutate, longer running and larger pool, no longer giving it the
answer at the start.

Fri Jan 10 23:21:09 2014 +0000
Remove -compile(debug_info)
It does nothing!

James Ashworth ES327

60

Fri Jan 10 23:18:24 2014 +0000
Evaluator Refactor
Remove if and replace with guards.

Sun Dec 29 00:46:20 2013 +0000
Adding Catch Functionality
Value is now 'caught', so in the event of a rogue function (/0, complex outcome, etc.) the
equation is marked as invalid rather than giving an error.
Filereader re-edited to include straight power and divide, to avoid watering down.
Operation now filters out all invalid functions before creating the new generation.

Sun Dec 1 21:14:51 2013 +0000
Test Changes
Changed testfunctions to reflect removal of ^ and addition of ^2 and ^3.
Added Generations to testparameters.

Sun Dec 1 21:13:58 2013 +0000
Standard Functions
Made Standard Float to List conversion to centrally control limit on decimal places in variables
(currently 10).

Sun Dec 1 21:13:13 2013 +0000
Sorting and Standardisation
Code to sort pool and standardise between 1 and 0 now in place. New generation code altered
slightly to heed a compiler warning, and to leave a better place for messaging.

Sun Dec 1 21:11:56 2013 +0000
Generated Pool Sorted and Standardised
The pool that is read is now vetted for validity.
The entire pool is now evaluated as it is generated.
The pool is then sorted to have best results at the top, standardised such that a good result is
close to 1, and a bad result is close to 0.

Sun Dec 1 21:09:52 2013 +0000
/ and ^ Fix
/ had no guard against /0.
^ had no guard against complex numbers.
Added guard for /, implemented ^2 and ^3 as fixes to prevent complexity.
Sun Dec 1 21:08:20 2013 +0000
Syntax and Wording
Variable left behind from previous revision removed, + copy-paste errors fixed.

Sun Dec 1 21:07:12 2013 +0000
Delete Sticky Files
Random and Lists are in the main Erlang bin, so do not need local copies.

James Ashworth ES327

61

Sat Nov 30 01:38:43 2013 +0000
Fitness Evaluation Fix
Invalid equations and perfect equations were both returning 0. Now invalid returns the atom
'invalid'.

Thu Nov 28 15:55:49 2013 +0000
Pool Generation
Pool is now read from file, then additional equations generated until the pool size is reached.
Alternately, if more equations than pool size are created, pool will be reduced to given size
after first generation.

Thu Nov 28 15:54:09 2013 +0000
Merge branch 'master' of https://github.com/JamesAshworth/Erlang-GP

Thu Nov 28 15:53:52 2013 +0000
Filereader
Changed format of function file - now multiple rows of comma-separated.
Changed format of data file - now standard csv, w/ headings across top.
Changed format of pool file - now space separated polish notation, for readability.

Mon Nov 25 23:50:28 2013 +0000
Fitness + Variable Mutation
Fitness now goes for maximum deviation over average deviation.
Variable mutation now uses phi for symmetry, otherwise variables will tend to 0.

Sat Nov 23 23:53:27 2013 +0000
Evaluation, Generations
Evaluation rewritten and abstracted slightly
Operations abstracted to be behind generations

Sat Nov 23 17:58:54 2013 +0000
Mutation and Cloning
Mutating now works, and settings can be retrieved from the master settings function return.
Clone is also implemented.

Tue Nov 19 23:56:46 2013 +0000
Create README.md

Tue Nov 19 23:53:57 2013 +0000
File Reader
Pool file can now be read
Integer constants do not need to be defined as constants

Tue Nov 12 17:58:51 2013 +0000
File Reader, Settings Initialisation and Shit
Dealing with an initialised pool and reading parameters in.
POOL READING NOT DONE YET - TBD.

James Ashworth ES327

62

Sat Nov 9 19:17:25 2013 +0000
File Reader + Commenting
File reader now reads in constant and function files.
All code now commented in one way or another.
Demo file removed as superfluous.

Sat Nov 9 01:30:38 2013 +0000
File Reader
Added a read_file function to read in a csv file in a specified format and break it down into
data tuples as required elsewhere – returns {[list of data tuples], number of data points}. Also
added testdata illustrating circumference of a circle for 5 points for test purposes.

Wed Nov 6 00:42:16 2013 +0000
Comments
Comments file for making notes on chosen syntax etc.

Wed Nov 6 00:41:49 2013 +0000
Evaluator
Evaluator now deals with data and single argument functions

Tue Nov 5 18:05:34 2013 +0000
Evaluator
Initial attempt at an evaluator for binary tree functions.

Fri Nov 1 01:44:24 2013 +0000
Remove Ignored files from Repo

Fri Nov 1 01:43:26 2013 +0000
Ignore File

Fri Nov 1 01:39:20 2013 +0000
Initial Commit (Crossover)
Initial Commit to Git
Crossover already implemented in operation.erl

